OFFSET
1,2
COMMENTS
The fixed points of permutation A069799.
Differs from its subsequence, A072774, Powers of squarefree numbers, for the first time at n=68, as here a(68) = 90 is included, as 90 = p_1^1 * p_2^2 * p_3^1 has a palindromic tuple of exponents, even although not all of them are identical.
Differs from its another subsequence, A236510, in that, although numbers like 42 = 2^1 * 3^1 * 5^0 * 7^1, with a non-palindromic exponent-tuple (1,1,0,1) are excluded from A236510, it is included in this sequence, because here only the nonzero exponents are considered, and (1,1,1) is a palindrome.
Differs from A085924 in that as that sequence is subtly base-dependent, it excludes 1024 (= 2^10), as then the only exponent present, 10, and thus also its concatenation, "10", is not a palindrome when viewed in decimal base. On the contrary, here a(691) = 1024.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
EXAMPLE
As 1 has an empty factorization, (), which also is a palindrome, 1 is present.
As 42 = 2 * 3 * 7 = p_1^1 * p_2^1 * p_4^1, and (1,1,1) is palindrome, 42 is present.
As 90 = 2 * 9 * 5 = p_1^1 * p_2^2 * p_3^1, and (1,2,1) is palindrome, 90 is present.
Any prime power (A000961) is present, as such numbers have a factorization p^e (e >= 1), and any singleton sequence (e) by itself forms a palindrome.
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 30 2014
STATUS
approved