login
A242414
Numbers whose prime factorization viewed as a tuple of nonzero powers is palindromic.
26
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 100
OFFSET
1,2
COMMENTS
The fixed points of permutation A069799.
Differs from its subsequence, A072774, Powers of squarefree numbers, for the first time at n=68, as here a(68) = 90 is included, as 90 = p_1^1 * p_2^2 * p_3^1 has a palindromic tuple of exponents, even although not all of them are identical.
Differs from its another subsequence, A236510, in that, although numbers like 42 = 2^1 * 3^1 * 5^0 * 7^1, with a non-palindromic exponent-tuple (1,1,0,1) are excluded from A236510, it is included in this sequence, because here only the nonzero exponents are considered, and (1,1,1) is a palindrome.
Differs from A085924 in that as that sequence is subtly base-dependent, it excludes 1024 (= 2^10), as then the only exponent present, 10, and thus also its concatenation, "10", is not a palindrome when viewed in decimal base. On the contrary, here a(691) = 1024.
LINKS
EXAMPLE
As 1 has an empty factorization, (), which also is a palindrome, 1 is present.
As 42 = 2 * 3 * 7 = p_1^1 * p_2^1 * p_4^1, and (1,1,1) is palindrome, 42 is present.
As 90 = 2 * 9 * 5 = p_1^1 * p_2^2 * p_3^1, and (1,2,1) is palindrome, 90 is present.
Any prime power (A000961) is present, as such numbers have a factorization p^e (e >= 1), and any singleton sequence (e) by itself forms a palindrome.
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A242414 (FIXED-POINTS 1 1 A069799))
CROSSREFS
Fixed points of A069799.
Complement: A242416.
A000961, A072774 and A236510 are subsequences.
Sequence in context: A317101 A304449 A085924 * A360249 A360247 A072774
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 30 2014
STATUS
approved