login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242411 If n is a prime power, p_i^e, a(n) = 0, otherwise difference (i-j) of the indices of the two largest distinct primes p_i, p_j, i > j in the prime factorization of n: a(n) = A061395(n) - A061395(A051119(n)). 8
0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 3, 1, 0, 0, 1, 0, 2, 2, 4, 0, 1, 0, 5, 0, 3, 0, 1, 0, 0, 3, 6, 1, 1, 0, 7, 4, 2, 0, 2, 0, 4, 1, 8, 0, 1, 0, 2, 5, 5, 0, 1, 2, 3, 6, 9, 0, 1, 0, 10, 2, 0, 3, 3, 0, 6, 7, 1, 0, 1, 0, 11, 1, 7, 1, 4, 0, 2, 0, 12, 0, 2, 4, 13, 8, 4, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,10

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000

Index entries for sequences computed from indices in prime factorization

FORMULA

If A001221(n) = 1, then a(n) = 0, otherwise a(n) = A241919(n) = A061395(n) - A061395(A051119(n)).

PROG

(Scheme) (define (A242411 n) (if (= 1 (A001221 n)) 0 (- (A061395 n) (A061395 (A051119 n)))))

(Haskell)

a242411 1 = 0

a242411 n = i - j where

            (i:j:_) = map a049084 $ ps ++ [p]

            ps@(p:_) = reverse $ a027748_row n

-- Reinhard Zumkeller, May 15 2014

(Python)

from sympy import factorint, primefactors, primepi

def a061395(n): return 0 if n==1 else primepi(primefactors(n)[-1])

def a053585(n):

    if n==1: return 1

    p = primefactors(n)[-1]

    return p**factorint(n)[p]

def a051119(n): return n/a053585(n)

def a(n): return 0 if n==1 or len(primefactors(n))==1 else a061395(n) - a061395(a051119(n)) # Indranil Ghosh, May 19 2017

CROSSREFS

Cf. A000961 (positions of zeros).

Cf. A241917, A241919, A051119, A061395.

Cf. A049084, A027748.

Sequence in context: A175790 A124305 A087073 * A286470 A243055 A245151

Adjacent sequences:  A242408 A242409 A242410 * A242412 A242413 A242414

KEYWORD

nonn

AUTHOR

Antti Karttunen, May 13 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 23 01:55 EST 2018. Contains 298093 sequences.