login
A241923
6*s*t*(4*s^4 + 3*t^4), where s > 0, t = 1..s.
3
42, 804, 2688, 5886, 13392, 30618, 24648, 51456, 91224, 172032, 75090, 152880, 246870, 392160, 656250, 186732, 376704, 586116, 857088, 1270620, 1959552, 403494, 810768, 1240722, 1742496, 2410590, 3399984, 4941258, 786576, 1577472, 2394288, 3293184
OFFSET
1,1
COMMENTS
Sequence lists, in nonincreasing order, the x-values in special solutions to x^4 + y^3 = z^2, that is: a(n)^4 + A241924(n)^3 = A241925(n)^2 (see also Cohen's post in Links section).
LINKS
Dario Alpern, Sum of powers, a^4 + b^3 = c^2.
Henri Cohen, a^m + b^n = c^p (was: Sum of two powers = Square), post in the newsgroup sci.math.research, Jan 09 1998.
MATHEMATICA
Flatten[Table[6 s t (4 s^4 + 3 t^4), {s, 10}, {t, s}]]
PROG
(Magma) [6*s*t*(4*s^4+3*t^4): t in [1..s], s in [1..10]];
CROSSREFS
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, May 02 2014
STATUS
approved