login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241925 (4*s^4 - 3*t^4)*(16*s^8 + 408*s^4*t^4 + 9*t^8), where s > 0, t = 1..s. 3
433, 648613, 1773568, 44308593, 175549248, 230113953, 1177246693, 2656718848, 7472540053, 7264534528, 16243007473, 25334809408, 60857858593, 124911535168, 105712890625, 141973041573, 181487996928, 344699541333, 719049719808, 1194117112629, 942546751488 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Sequence lists, in nonincreasing order, the z-values in special solutions to x^4 + y^3 = z^2, that is: A241923(n)^4 + A241924(n)^3 = a(n)^2 (see also Cohen's post in Links section).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

D. Alpern, List of first 1602 solutions to a^4 + b^3 = c^2 for increasing values of a, where gcd(a,b,c) = 1.

D. Alpern, Sum of powers, a^4 + b^3 = c^2.

H. Cohen, a^m + b^n = c^p (was: Sum of two powers = Square), Sci.Math.Research posting to Jan 09 1998.

MATHEMATICA

Flatten[Table[(4 s^4 - 3 t^4) (16 s^8 + 408 s^4 t^4 + 9 t^8), {s, 10}, {t, s}]]

PROG

(MAGMA) [(4*s^4-3*t^4)*(16*s^8+408*s^4*t^4+9*t^8): t in [1..s], s in [1..10]];

CROSSREFS

Cf. A096741, A241923, A241924.

Sequence in context: A059664 A289857 A198450 * A108832 A055009 A054982

Adjacent sequences:  A241922 A241923 A241924 * A241926 A241927 A241928

KEYWORD

nonn

AUTHOR

Vincenzo Librandi, May 02 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 18 05:48 EST 2018. Contains 299298 sequences. (Running on oeis4.)