login
A241925
(4*s^4 - 3*t^4)*(16*s^8 + 408*s^4*t^4 + 9*t^8), where s > 0, t = 1..s.
3
433, 648613, 1773568, 44308593, 175549248, 230113953, 1177246693, 2656718848, 7472540053, 7264534528, 16243007473, 25334809408, 60857858593, 124911535168, 105712890625, 141973041573, 181487996928, 344699541333, 719049719808, 1194117112629, 942546751488
OFFSET
1,1
COMMENTS
Sequence lists, in nonincreasing order, the z-values in special solutions to x^4 + y^3 = z^2, that is: A241923(n)^4 + A241924(n)^3 = a(n)^2 (see also Cohen's post in Links section).
LINKS
Dario Alpern, Sum of powers, a^4 + b^3 = c^2.
Henri Cohen, a^m + b^n = c^p (was: Sum of two powers = Square), post in the newsgroup sci.math.research, Jan 09 1998.
MATHEMATICA
Flatten[Table[(4 s^4 - 3 t^4) (16 s^8 + 408 s^4 t^4 + 9 t^8), {s, 10}, {t, s}]]
PROG
(Magma) [(4*s^4-3*t^4)*(16*s^8+408*s^4*t^4+9*t^8): t in [1..s], s in [1..10]];
CROSSREFS
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, May 02 2014
STATUS
approved