login
A240998
G.f. satisfies: A(x)^2 = x + A(x + 2*x^2).
1
1, 1, 1, 2, 11, 86, 942, 12996, 217179, 4258118, 95807186, 2432620268, 68794640758, 2144208839932, 73022589819004, 2697651739347912, 107445653707814259, 4589616491007605958, 209295193019035187754, 10148293234344417217692, 521357263631063209544130
OFFSET
0,4
COMMENTS
For n>0, a(n) == 1 (mod 2) iff n=2^k for k>=0 (conjecture).
LINKS
FORMULA
a(n) ~ c * 2^n * n^(n - 1 - log(2)) / (exp(n) * (log(2))^n), where c = 0.223600492535213287429897519... . - Vaclav Kotesovec, Aug 08 2014
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 11*x^4 + 86*x^5 + 942*x^6 + 12996*x^7 +...
Compare the related series:
A(x)^2 = 1 + 2*x + 3*x^2 + 6*x^3 + 27*x^4 + 198*x^5 + 2082*x^6 + 28092*x^7 +...
A(x+2*x^2) = 1 + x + 3*x^2 + 6*x^3 + 27*x^4 + 198*x^5 + 2082*x^6 + 28092*x^7 +...
PROG
(PARI) {a(n)=local(A=[1, 1], Ax=Ser(A)); for(i=1, n, A=concat(A, 0);
A[#A]=Vec(1+subst(Ser(A), x, x+2*x^2) - Ser(A)^2)[#A]); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A135404 A370475 A153304 * A331876 A305537 A036076
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 06 2014
STATUS
approved