login
A305537
G.f. A(x) satisfies: A(x) = 1/(1 - x*A(x) - x*A(x)/(1 - x*A(x) - 2*x*A(x)/(1 - x*A(x) - 3*x*A(x)/(1 - x*A(x) - 4*x*A(x)/(1 - ...))))), a continued fraction.
0
1, 2, 11, 87, 844, 9438, 118217, 1636078, 24869591, 414422424, 7568815758, 151468591827, 3317061005044, 79265498450882, 2058189152006115, 57777549430984983, 1744191365957251044, 56332730020388347302, 1937412176139535240463, 70659708678402399722656
OFFSET
0,2
FORMULA
a(n) = [x^n] (Sum_{k>=0} A001515(k)*x^k)^(n+1)/(n + 1).
EXAMPLE
G.f. A(x) = 1 + 2*x + 11*x^2 + 87*x^3 + 844*x^4 + 9438*x^5 + 118217*x^6 + 1636078*x^7 + 24869591*x^8 + ...
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 04 2018
STATUS
approved