login
A370475
G.f. satisfies A(x) = 1 + x * A(x)^(3/2) * (1 + A(x)^(5/2)).
3
1, 2, 11, 86, 785, 7818, 82360, 902394, 10178528, 117402240, 1378372807, 16417823232, 197903156219, 2409689022268, 29593911665705, 366158474520010, 4559848894822462, 57109656154370922, 718896822713092457, 9090475112572839810, 115417175337050727590
OFFSET
0,2
FORMULA
a(n) = Sum{k=0..n} binomial(n,k) * binomial(3*n/2+5*k/2+1,n)/(3*n/2+5*k/2+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n/2+5*k/2+1, n)/(3*n/2+5*k/2+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 31 2024
STATUS
approved