

A240764


Least k such that prime power factorization of A240751(k)! contains p^k when the smallest such p equals prime(n), or a(n)=0 if there is no such k.


9




OFFSET

1,2


COMMENTS

The first position k in A240755 in which A240755(k) = prime(n), or a(n)=0 if prime(n) does not occur in A240755.
Conjecture: all a(n)>0.


LINKS

Table of n, a(n) for n=1..9.
David A. Corneth, A240751; a(n) is the smallest k such that in the prime power factorization of k! there exists at least one exponent n., Seqfan, (Mar 25 2017)


EXAMPLE

A240751(a(3))! = A240751(12)! = 50!. 50! is the least factorial having exponent 12 in its prime factorization. That exponent denotes the multiplicity of prime(3) = 5.  David A. Corneth, Mar 27 2017


CROSSREFS

Cf. A240537, A240606, A240619, A240620, A240668, A240669, A240670, A240672, A240695, A240751, A240755.
Sequence in context: A338798 A326517 A248119 * A215784 A061780 A249411
Adjacent sequences: A240761 A240762 A240763 * A240765 A240766 A240767


KEYWORD

nonn,more


AUTHOR

Vladimir Shevelev, Apr 12 2014


EXTENSIONS

a(5)a(7) from Peter J. C. Moses, Apr 14 2014
a(8)a(9) from David A. Corneth, Mar 27 2017


STATUS

approved



