|
|
A240668
|
|
Number of the first odd exponents in the prime power factorization of (2*n)!.
|
|
16
|
|
|
1, 2, 0, 1, 0, 0, 2, 1, 0, 0, 2, 0, 1, 2, 0, 1, 0, 0, 2, 0, 3, 3, 0, 0, 1, 2, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 5, 0, 1, 0, 0, 3, 0, 1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 3, 0, 1, 2, 0, 3, 0, 0, 2, 0, 5, 2, 0, 0, 1, 3, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 0, 0, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
According to Chen's theorem, the sequence is unbounded.
|
|
LINKS
|
Peter J. C. Moses, Table of n, a(n) for n = 1..10000
D. Berend, Parity of exponents in the factorization of n!, J. Number Theory, 64 (1997), 13-19.
Y.-G. Chen, On the parity of exponents in the standard factorization of n!, J. Number Theory, 100 (2003), 326-331.
|
|
FORMULA
|
a(n)*A240606(n) = 0.
|
|
EXAMPLE
|
32! = 2^31*3^14*5^7*7^4*11^2*13^2*17*19*23*29*31, and only the first 1 exponent is odd, so a(16) = 1.
|
|
MATHEMATICA
|
Map[Count[First[Split[Mod[Last[Transpose[FactorInteger[(2*#)!]]], 2]]], 1]&, Range[75]] (* Peter J. C. Moses, Apr 10 2014 *)
|
|
PROG
|
(PARI) a(n) = {my(f = factor((2*n)!)); my(nb = 0); my(i = 1); while((i <= #f~) && (f[i, 2] % 2), nb++; i++; ); nb; } \\ Michel Marcus, Apr 10 2014
|
|
CROSSREFS
|
Cf. A240537, A240606, A240619, A240620.
Sequence in context: A025895 A104451 A285680 * A106602 A106594 A341026
Adjacent sequences: A240665 A240666 A240667 * A240669 A240670 A240671
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladimir Shevelev, Apr 10 2014
|
|
EXTENSIONS
|
More terms from Michel Marcus, Apr 10 2014
|
|
STATUS
|
approved
|
|
|
|