login
A215784
Number of permutations of 0..floor((n*6-1)/2) on even squares of an n X 6 array such that each row, column, diagonal and (downwards) antidiagonal of even squares is increasing.
1
1, 2, 12, 29, 189, 458, 2988, 7241, 47241, 114482, 746892, 1809989, 11808549, 28616378, 186696108, 452432081, 2951712081, 7153064162, 46667304972, 113091730349, 737821743309, 1788008493098, 11665145978028, 28268860698521
OFFSET
1,2
COMMENTS
Column 6 of A215788.
LINKS
FORMULA
Empirical: a(n) = 16*a(n-2) - 3*a(n-4).
Empirical g.f.: x*(1 + 3*x)*(1 - x - x^2) / (1 - 16*x^2 + 3*x^4). - Colin Barker, Jul 23 2018
EXAMPLE
Some solutions for n=4:
..0..x..1..x..3..x....0..x..1..x..3..x....0..x..1..x..2..x....0..x..1..x..2..x
..x..2..x..5..x..8....x..2..x..5..x..7....x..3..x..4..x..6....x..3..x..4..x..5
..4..x..6..x..9..x....4..x..6..x..9..x....5..x..7..x..9..x....6..x..7..x..9..x
..x..7..x.10..x.11....x..8..x.10..x.11....x..8..x.10..x.11....x..8..x.10..x.11
CROSSREFS
Cf. A215788.
Sequence in context: A326517 A248119 A240764 * A061780 A249411 A156021
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 23 2012
STATUS
approved