login
A240141
Number of partitions of n into distinct parts, where the difference between the number of odd parts and the number of even parts is 5.
2
1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 10, 1, 13, 2, 18, 4, 23, 7, 30, 12, 37, 19, 47, 30, 57, 44, 70, 64, 85, 90, 103, 125, 124, 169, 150, 227, 181, 298, 220, 388, 268, 498, 328, 634, 404, 797, 500, 996, 622, 1232, 775, 1515, 971, 1849, 1216, 2245, 1527, 2708
OFFSET
25,5
COMMENTS
With offset 30 number of partitions of n into distinct parts, where the difference between the number of odd parts and the number of even parts is -5.
LINKS
FORMULA
a(n) = [x^n y^5] Product_{i>=1} 1+x^i*y^(2*(i mod 2)-1).
EXAMPLE
a(39) = 13: [23,7,5,3,1], [21,9,5,3,1], [19,11,5,3,1], [19,9,7,3,1], [17,13,5,3,1], [17,11,7,3,1], [17,9,7,5,1], [15,13,7,3,1], [15,11,9,3,1], [15,11,7,5,1], [15,9,7,5,3], [13,11,9,5,1], [13,11,7,5,3].
a(40) = 2: [13,9,7,5,3,2,1], [11,9,7,5,4,3,1].
MAPLE
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2 or
abs(t)>n, 0, `if`(n=0, 1, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i-1, t+(2*irem(i, 2)-1)))))
end:
a:= n-> b(n$2, -5):
seq(a(n), n=25..100);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n > i (i + 1)/2 || Abs[t] > n, 0, If[n == 0, 1, b[n, i-1, t] + If[i>n, 0, b[n - i, i - 1, t + 2 Mod[i, 2] - 1]]]];
a[n_] := b[n, n, -5];
a /@ Range[25, 80] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A240021.
Sequence in context: A362369 A320311 A240140 * A049641 A240142 A240143
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 02 2014
STATUS
approved