login
A240142
Number of partitions of n into distinct parts, where the difference between the number of odd parts and the number of even parts is 6.
2
1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 11, 0, 14, 1, 20, 2, 26, 4, 35, 7, 44, 12, 58, 19, 71, 30, 90, 45, 110, 66, 136, 94, 164, 132, 201, 181, 240, 246, 291, 328, 348, 433, 419, 564, 501, 728, 605, 929, 726, 1177, 878, 1477, 1061, 1841, 1288, 2278, 1565, 2801
OFFSET
36,5
COMMENTS
With offset 42 number of partitions of n into distinct parts, where the difference between the number of odd parts and the number of even parts is -6.
LINKS
FORMULA
a(n) = [x^n y^6] Product_{i>=1} 1+x^i*y^(2*(i mod 2)-1).
EXAMPLE
a(50) = 14: [25,9,7,5,3,1], [23,11,7,5,3,1], [21,13,7,5,3,1], [21,11,9,5,3,1], [19,15,7,5,3,1], [19,13,9,5,3,1], [19,11,9,7,3,1], [17,15,9,5,3,1], [17,13,11,5,3,1], [17,13,9,7,3,1], [17,11,9,7,5,1], [15,13,11,7,3,1], [15,13,9,7,5,1], [15,11,9,7,5,3].
a(51) = 1: [13,11,9,7,5,3,2,1].
MAPLE
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2 or
abs(t)>n, 0, `if`(n=0, 1, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i-1, t+(2*irem(i, 2)-1)))))
end:
a:= n-> b(n$2, -6):
seq(a(n), n=36..120);
CROSSREFS
Column k=6 of A240021.
Sequence in context: A240140 A240141 A049641 * A240143 A240144 A240145
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 02 2014
STATUS
approved