login
A240140
Number of partitions of n into distinct parts, where the difference between the number of odd parts and the number of even parts is 4.
2
1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 6, 1, 9, 2, 11, 4, 15, 7, 18, 12, 23, 19, 27, 29, 34, 42, 40, 60, 49, 83, 59, 113, 73, 150, 89, 197, 112, 254, 141, 324, 180, 408, 231, 509, 298, 629, 386, 771, 500, 938, 648, 1135, 835, 1365, 1076, 1634, 1376, 1949, 1755, 2317
OFFSET
16,5
COMMENTS
With offset 20 number of partitions of n into distinct parts, where the difference between the number of odd parts and the number of even parts is -4.
LINKS
FORMULA
a(n) = [x^n y^4] Product_{i>=1} 1+x^i*y^(2*(i mod 2)-1).
EXAMPLE
a(28) = 9: [19,5,3,1], [17,7,3,1], [15,9,3,1], [15,7,5,1], [13,11,3,1], [13,9,5,1], [13,7,5,3], [11,9,7,1], [11,9,5,3].
a(29) = 2: [11,7,5,3,2,1], [9,7,5,4,3,1].
MAPLE
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2 or
abs(t)>n, 0, `if`(n=0, 1, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i-1, t+(2*irem(i, 2)-1)))))
end:
a:= n-> b(n$2, -4):
seq(a(n), n=16..80);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n > i(i+1)/2 || Abs[t] > n, 0, If[n == 0, 1, b[n, i-1, t] + If[i>n, 0, b[n-i, i-1, t + 2 Mod[i, 2] - 1]]]];
a[n_] := b[n, n, -4];
a /@ Range[16, 80] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A240021.
Sequence in context: A239968 A362369 A320311 * A240141 A049641 A240142
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 02 2014
STATUS
approved