login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238532
Number of distinct factorial numbers congruent to -1 (mod n).
2
0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 7, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,7
COMMENTS
Number of solutions to k! == -1 (mod n), k>=1.
Counts the frequency of the value n-1 in the n-th row of triangle A062169.
Values 1..9 occur for the first time at n = 2, 7, 23, 59, 227, 401, 71, 3643, 62939, which are all prime numbers (see also A230315). Sequence A256519 gives composite k for which a(k) > 0. - Antti Karttunen, May 24 2021
EXAMPLE
There are two 6's in the 7th row of A062169. Therefore a(7)=2.
MAPLE
A238532 := proc(n)
local a, k ;
a := 0 ;
for k from 1 to n-1 do
if modp(k!, n) = modp(-1, n) then
a := a+1 ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Apr 02 2014
PROG
(PARI) A238532(n) = { my(m=1, s=0); for(k=1, oo, m *= k; if(!(m%n), return(s), if(1+(m%n)==n, s++))); }; \\ Antti Karttunen, May 24 2021
(PARI) A238532(n) = { my(m=Mod(1, n), s=0, x); for(k=1, oo, m *= Mod(k, n); x = lift(m); if(!x, return(s), if(x==(n-1), s++))); }; \\ (Much faster than above program) - Antti Karttunen, May 24 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Apr 02 2014
STATUS
approved