login
A238502
Let k = A239161(n); then a(n) = (sum of divisors of k) /(sum of divisors d of k with d <= sqrt(k)).
3
1, 3, 4, 6, 4, 8, 5, 6, 12, 14, 8, 6, 18, 20, 6, 8, 12, 24, 6, 14, 10, 8, 30, 32, 9, 12, 18, 8, 38, 20, 14, 42, 8, 44, 12, 24, 48, 18, 14, 54, 10, 12, 20, 30, 60, 8, 62, 32, 14, 12, 68, 18, 24, 72, 74, 38, 20, 12, 14, 80, 42, 84, 18, 44, 30, 12, 90, 9, 14, 24
OFFSET
1,2
COMMENTS
A000203(k)/A066839(k) is an integer, where k = A239161(n).
LINKS
EXAMPLE
a(10) = 14 because k = A239161(10) = 13 and A000203(13) = 14, A066839(13) = 1 and A000203(13)/A066839(13) is an integer.
MATHEMATICA
lst={}; f[n_]:=DivisorSigma[1, n]/Plus@@Select[Divisors@n, #<=Sqrt@n&]; Do[If[IntegerQ[f[n]], AppendTo[lst, f[n]]], {n, 1, 200}]; lst
PROG
(PARI) lista(nn) = { for(n = 1, nn, q = sigma(n) / sumdiv(n, d, d*(d<=sqrt(n))); if (type(q) == "t_INT", print1(q, ", ")); ); } \\ Michel Marcus, Mar 05 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 27 2014
STATUS
approved