OFFSET
1,3
COMMENTS
Conjecture: a(n) > 0 for all n > 2, and a(n) = 1 only for n = 5, 8, 13. Moreover, for each n = 1, 2, 3, ..., there is a positive integer k < 3*sqrt(n) + 3 with pi(k*n) prime.
Note that the least positive integer k with pi(k*38) prime is 21 < 3*sqrt(38) + 3 < 21.5.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..2500
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014-2016.
Zhi-Wei Sun and Lilu Zhao, On the set {pi(kn): k=1,2,3,...}, arXiv:2004.01080 [math.NT], 2020.
EXAMPLE
a(5) = 1 since pi(1*5) = 3 is prime.
a(8) = 1 since pi(4*8) = 11 is prime.
a(13) = 1 since pi(10*13) = pi(130) = 31 is prime.
a(38) = 3 since pi(21*38) = pi(798) = 139, pi(28*38) = pi(1064) = 179 and pi(31*38) = pi(1178) = 193 are all prime.
MATHEMATICA
a[n_]:=Sum[If[PrimeQ[PrimePi[k*n]], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 09 2014
STATUS
approved