OFFSET
1,7
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 5.
(ii) Any integer n > 23 can be written as k + m (k > 0 and m > 0) with pi(k) + pi(m) prime. Also, each integer n > 25 can be written as k + m (k > 0 and m > 0) with pi(k) + pi(m) - 1 prime.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..3000
EXAMPLE
a(6) = 1 since 6 = 3 + 3 with pi(3) + pi(3) - 2 = 2 + 2 - 2 = 2 prime.
a(17) = 1 since 17 = 2 + 15 with pi(2) + pi(15) - 2 = 1 + 6 - 2 = 5 prime.
a(99) = 1 since 99 = 1 + 98 with pi(1) + pi(98) - 2 = 0 + 25 - 2 = 23 prime.
MATHEMATICA
PQ[n_]:=n>0&&PrimeQ[n]
p[k_, m_]:=PQ[PrimePi[k]+PrimePi[m]-2]
a[n_]:=Sum[If[p[k, n-k], 1, 0], {k, 1, n/2}]
Table[a[n], {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 08 2014
STATUS
approved