login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237417
Numbers that are the product of an odiousfree number and an evilfree number.
2
3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 21, 23, 24, 27, 29, 30, 33, 34, 35, 36, 39, 40, 42, 43, 45, 46, 48, 51, 53, 54, 55, 57, 58, 60, 63, 65, 66, 68, 70, 71, 72, 78, 80, 83, 84, 85, 86, 89, 90, 92, 93, 95, 96, 99, 101, 102, 105, 106, 108, 110, 111, 113, 114, 116, 117, 119, 120, 123, 126, 129
OFFSET
1,1
COMMENTS
Odiousfree*evilfree numbers: numbers of the form odiousfree*evilfree.
Subsequence of this sequence (A237417): numbers that are not the products of two odious numbers or the products of two evil numbers: 3, 5, 6, 10, 12, 17, 20, 23, 24, 29, 33, 34, 39, 40, 43, 46, 48, 57, 58, 63, 65, 66, 68, 71, 78, 80, 83, 86, 89, 92, 95, 101, 105, 106, 111, 113, 114, 116, 119,...
Putting the 1 aside in A093688, these could be called odiousfree numbers, and are a subsequence of A001969. A093696 would be the evilfree numbers then, and are a subsequence of A000069.
LINKS
FORMULA
a(n) = A093688(k+1)*A093696(m).
MAPLE
N:= 200: # to get all terms <= N
Ofree:= {$2..N}: Efree:= {$1..N/3}:
for n from 2 to N do
t:= convert(convert(n, base, 2), `+`) mod 2;
if t = 0 then Efree:= Efree minus {seq(i, i=n..N/3, n)}
else Ofree:= Ofree minus {seq(i, i=n..N, n)}
fi
od:
sort(convert(select(`<=`, {seq(seq(s*t, s=Ofree), t=Efree)}, N), list)); # Robert Israel, May 09 2019
MATHEMATICA
odFreeQ[n_] := AllTrue[Rest @ Divisors[n], EvenQ[DigitCount[#, 2, 1]] &]; evFreeQ[n_] := AllTrue[Divisors[n], OddQ[DigitCount[#, 2, 1]] &]; m = 100; o = Select[Range[2, m], odFreeQ]; e = Select[Range[m], evFreeQ]; Union @ Select[Times @@@ Tuples[{o, e}], # <= m &] (* Amiram Eldar, Oct 16 2020 *)
PROG
(PARI) isA093696(n)= fordiv(n, d, if(hammingweight(d)%2==0, return(0))); 1;
isA093688(n)= if (n==1, 0, sumdiv(n, d, hammingweight(d)%2)==1);
lista(nn) = {vn = vector(2*nn, i, i); vof = select(n->isA093696(n), vn); vef = select(n->isA093688(n), vn); vp = []; for (i = 1, #vof, for (j = 1, #vef, vp = Set(concat(vp, vof[i]*vef[j])); ); ); for (i = 1, #vp, if (vp[i] <= nn, print1(vp[i], ", ")); ); } \\ Michel Marcus, Mar 05 2014
CROSSREFS
Sequence in context: A325428 A239064 A227455 * A165740 A241571 A080307
KEYWORD
nonn,base
AUTHOR
Irina Gerasimova, Feb 23 2014, following a suggestion from Juri-Stepan Gerasimov
EXTENSIONS
Definition corrected by Jon E. Schoenfield, Feb 26 2014
STATUS
approved