OFFSET
1,6
COMMENTS
The generalized binomial coefficients produced by this sequence provide an analog to Kummer's Theorem using arithmetic in base 6.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
FORMULA
a(n) = 6^(valuation(n,6)).
a(n) = 6^A122841(n). - Joerg Arndt, Jan 02 2014
G.f.: x/(1 - x) + 5 * Sum_{k>=1} 6^(k-1)*x^(6^k)/(1 - x^(6^k)). - Ilya Gutkovskiy, Jul 10 2019
EXAMPLE
Since 12 = 6 * 2, a(12) = 6. Likewise, since 6 does not divide 13, a(13) = 1.
MATHEMATICA
6^Table[IntegerExponent[n, 6], {n, 84}] (* Alonso del Arte, Jan 01 2014 *)
PROG
(Sage)
n=200 #change n for more terms
[6^(valuation(i, 6)) for i in [1..n]]
(Haskell)
a234959 = f 1 where
f y x = if m == 0 then f (y * 6) x' else y where (x', m) = divMod x 6
-- Reinhard Zumkeller, Feb 09 2015
(PARI) a(n)=6^valuation(n, 6) \\ Charles R Greathouse IV, Aug 05 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Tom Edgar, Jan 01 2014
STATUS
approved