login
A038500
Highest power of 3 dividing n.
65
1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 81
OFFSET
1,3
COMMENTS
To construct the sequence: start with 1 and concatenate twice: 1,1,1 then tripling the last term gives: 1,1,3. Concatenating those 3 terms twice gives: 1,1,3,1,1,3,1,1,3, triple the last term -> 1,1,3,1,1,3,1,1,9. Concatenating those 9 terms twice gives: 1,1,3,1,1,3,1,1,9,1,1,3,1,1,3,1,1,9,1,1,3,1,1,3,1,1,9, triple the last term -> 1,1,3,1,1,3,1,1,9,1,1,3,1,1,3,1,1,9,1,1,3,1,1,3,1,1,27 etc. - Benoit Cloitre, Dec 17 2002
Also 3-adic value of 1/n, n >= 1. See the Mahler reference, definition on p. 7. This is a non-archimedean valuation. See Mahler, p. 10. Sometimes also called 3-adic absolute value. - Wolfdieter Lang, Jun 28 2014
REFERENCES
Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.
LINKS
Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
Zoran Sunic, Tree morphisms, transducers and integer sequences, arXiv:math/0612080 [math.CO], 2006.
FORMULA
Multiplicative with a(p^e) = p^e if p = 3, 1 otherwise. - Mitch Harris, Apr 19 2005
a(n) = n / A038502(n). Dirichlet g.f. zeta(s)*(3^s-1)/(3^s-3). - R. J. Mathar, Jul 12 2012
From Peter Bala, Feb 21 2019: (Start)
a(n) = gcd(n,3^n).
O.g.f.: x/(1 - x) + 2*Sum_{n >= 1} 3^(n-1)*x^(3^n)/ (1 - x^(3^n)). (End)
Sum_{k=1..n} a(k) ~ (2/(3*log(3)))*n*log(n) + (2/3 + 2*(gamma-1)/(3*log(3)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 15 2022
MAPLE
A038500 := n -> 3^padic[ordp](n, 3): # Peter Luschny, Nov 26 2010
MATHEMATICA
Flatten[{1, 1, #}&/@(3^IntegerExponent[#, 3]&/@(3*Range[40]))] (* or *) hp3[n_]:=If[Divisible[n, 3], 3^IntegerExponent[n, 3], 1]; Array[hp3, 90] (* Harvey P. Dale, Mar 24 2012 *)
Table[3^IntegerExponent[n, 3], {n, 100}] (* Vincenzo Librandi, Dec 29 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, 3^valuation(n, 3))};
(Haskell)
a038500 = f 1 where
f y x = if m == 0 then f (y * 3) x' else y where (x', m) = divMod x 3
-- Reinhard Zumkeller, Jul 06 2014
(Magma) [3^Valuation(n, 3): n in [1..100]]; // Vincenzo Librandi, Dec 29 2015
CROSSREFS
KEYWORD
nonn,mult
STATUS
approved