

A234953


Normalized total height of all rooted trees on n labeled nodes.


6



0, 1, 5, 37, 357, 4351, 64243, 1115899, 22316409, 505378207, 12789077631, 357769603027, 10965667062133, 365497351868767, 13163965052815515, 509522144541045811, 21093278144993719665, 930067462093579181119, 43518024090910884374263, 2153670733766937656155699
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Equals A001854(n)/n. That is, similar to A001854, except here the root always has the fixed label 1.
This was in one of my thesis notebooks from 1964 (see the scans in A000435), but because it wasn't of central importance it was never added to the OEIS.


LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..100


FORMULA

a(n) = Sum_{k=1..n1} k*A034855(n,k)/n = Sum_{k=1..n1} k*A235595(n,k).


MATHEMATICA

gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k1]]; a[n_, k_] := n!*Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; a[n_] := Sum[k*(a[n, k]  a[n, k1]), {k, 1, n1}]/n; Array[a, 20] (* JeanFrançois Alcover, Mar 18 2014, after Alois P. Heinz *)


CROSSREFS

Cf. A001854, A034855, A235595, A236396.
Sequence in context: A198077 A208813 A112698 * A025168 A084358 A050351
Adjacent sequences: A234950 A234951 A234952 * A234954 A234955 A234956


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Jan 14 2014


STATUS

approved



