login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234955 Trisection of A107926: The least number k such that there are primes p and q with p - q = 6*n+2, p + q = k, and p the least such prime >= k/2. 2
8, 54, 108, 234, 228, 414, 516, 1182, 612, 1038, 1776, 1074, 3312, 1398, 1728, 2706, 2844, 4902, 1152, 3870, 2724, 4974, 2328, 6222, 5040, 13194, 10236, 5838, 8952, 9642, 9816, 12906, 21900, 11958, 14712, 6294, 15984, 9498, 31752, 31602, 6096, 37854, 41208, 6114 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

All terms found to date are congruent to 0 (mod 6), except for a(1).

Record values: 8, 54, 108, 228, 414, 516, 612, 1038, 1074, 1152, 2328, 5040, 5838, 6096, 6114, 22194, 37764, 37902, 99432, 136116, 176856, 318144, 410712, 1079952, 1436448, 2549346, 3278118, 7012944, 8268534, 11283126, 11284134, 22614234, 37510062, 41607234, 94089894, 139419954, 144049014, 305966316, 378180246, 490373322, 998189838, 1326486408, 1373334486, 1445744268, 2016602694, 2247482688, 3239350182, 3884888976, 5147119596, 7172019282, …, .

LINKS

Robert G. Wilson v, Table of n, a(n) for n = 1..867

FORMULA

a(n) = A107926(3n-2).

MATHEMATICA

f[n_] := Block[{p = n/2}, While[ !PrimeQ[n - p], p = NextPrime@ p]; p - n/2]; t = Table[0, {10000}]; k = 4;  While[k < 12475000001, If[ t[[f@ k]] == 0, t[[f@ k]] = k; Print[{f@ k, k}]]; k += 2]; Table[ t[[n]], {n, 2, 5000, 3}]

CROSSREFS

Cf. A107926, A231156, A234956.

Sequence in context: A293115 A070928 A180095 * A189393 A254951 A085537

Adjacent sequences:  A234952 A234953 A234954 * A234956 A234957 A234958

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, Jan 01 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 16:56 EST 2018. Contains 299356 sequences. (Running on oeis4.)