OFFSET
1,1
COMMENTS
Number k(n) = sigma(n)^(1/n) is number such that k(n)^n = sigma(n).
For number 2; k(2) = sigma(2)^(1/2) = sqrt(3) = 1,732050807568… = A002194 (maximal value of function k(n)).
The last term of this infinite sequence is number 1, k(1) = 1 (minimal value of function k(n)).
Conjecture: Every natural number n has a unique value of number k(n).
See A234521 - sequence of numbers a(n) such that a(n) > a(k) for all k < n.
LINKS
Jaroslav Krizek, Table of n, a(n) for n = 1..1000
PROG
(PARI) a(n)=vecsort(vector(2*n, i, sigma(i)^(1/i)), , 5)[n] \\ Michel Marcus and Ralf Stephan, Jan 14 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 04 2014
STATUS
approved