login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234520 Composite numbers n sorted by decreasing values of beta(n) = sigma(n)^(1/n) - (n+1)^(1/n), where sigma(n) = A000203(n) = the sum of divisors of n. 12
4, 6, 8, 12, 10, 18, 16, 24, 14, 20, 9, 15, 30, 36, 28, 22, 32, 40, 48, 42, 21, 26, 60, 54, 44, 27, 72, 56, 34, 50, 45, 52, 38, 66, 84, 33, 64, 90, 80, 70, 96, 78, 46, 39, 120, 68, 108, 35, 88, 76, 63, 25, 100, 58, 102, 126, 144, 112, 132, 62, 104, 75, 51, 92 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The number beta(n)  = sigma(n)^(1/n) - (n+1)^(1/n) is called the beta-deviation from primality of the number n; beta(p) = 0 for p = prime. See A234516 for definition of alpha(n).

For number 4; beta(4) = sigma(4)^(1/4) - (4+1)^(1/4), = 7^(1/4) - 5^(1/4) = 0,131227780… = A234522 (maximal value of function beta(n)).

Lim_n->infinity beta(n) = 0.

Conjecture: Every composite number n has a unique value of number beta(n).

See A234523 - sequence of numbers a(n) such that a(n) > a(k) for all k < n.

LINKS

Jaroslav Krizek, Table of n, a(n) for n = 1..1000

CROSSREFS

Cf. A234515, A234516, A234517, A234518, A234519, A234521, A234522, A234523, A234524.

Sequence in context: A320127 A110646 A320126 * A275789 A031359 A274790

Adjacent sequences:  A234517 A234518 A234519 * A234521 A234522 A234523

KEYWORD

nonn

AUTHOR

Jaroslav Krizek, Jan 14 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 15:09 EST 2019. Contains 329896 sequences. (Running on oeis4.)