login
A232712
Least positive k (not a power of 10) such that k and k^n have the same set of digits.
1
2, 4762, 107624, 35641, 39568, 1380796, 12635940, 40837596, 102349857, 102567384, 106342987, 129046873, 107623945, 231940678, 239607415, 368709154, 1023456789, 164758903, 176384592, 1023456789, 1023456789, 1023456789, 1023456789, 1023456789, 1023456789
OFFSET
1,1
COMMENTS
a(17) and a(20)-a(40) = A050278(1) = 1023456789, the smallest pandigital number. [Lars Blomberg, Dec 10 2013]
LINKS
PROG
(PARI) for(n=1, 6, k=1; until(Set(Vec(Str(k)))==Set(Vec(Str(k^n)))&&!(sumdigits(k)==1), k++); print1(k, ", "));
CROSSREFS
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
a(14)-a(25) from Lars Blomberg, Dec 10 2013
STATUS
approved