login
A232709
Nonnegative integers such that the sum of digits mod 10 equals the product of digits mod 10.
1
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 48, 84, 109, 123, 132, 137, 145, 154, 159, 173, 178, 187, 190, 195, 208, 213, 228, 231, 233, 235, 237, 239, 248, 253, 268, 273, 280, 282, 284, 286, 288, 293, 307, 312, 317, 321, 323, 325, 327, 329, 332, 337, 347, 352, 357, 367, 370, 371, 372, 373, 374, 375, 376, 377
OFFSET
1,3
LINKS
EXAMPLE
293 is in the sequence because 2+9+3 = 14 == 4 mod 10 and 2*9*3 = 54 == 4 mod 10.
MATHEMATICA
Select[Range[0, 400], Mod[Total[IntegerDigits[#]], 10]==Mod[Times@@ IntegerDigits[ #], 10]&] (* Harvey P. Dale, Oct 15 2021 *)
PROG
(JavaScript)
for (i=0; i<1000; i++) {
s=i.toString().split("");
sl=s.length;
c=0; d=1;
for (j=0; j<sl; j++) {c+=s[j]*1; d*=s[j]; }
c%=10; d%=10;
if (c==d) document.write(i+", ");
}
(PARI) is(n) = my(d=digits(n)); vecsum(d)%10==vecprod(d)%10 \\ David A. Corneth, Oct 15 2021
(Python)
from math import prod
def ok(n): d = list(map(int, str(n))); return sum(d)%10 == prod(d)%10
print([k for k in range(378) if ok(k)]) # Michael S. Branicky, Oct 15 2021
CROSSREFS
Cf. A034710.
Sequence in context: A045910 A128290 A110002 * A249334 A338257 A064158
KEYWORD
nonn,base
AUTHOR
Jon Perry, Nov 28 2013
EXTENSIONS
Offset changed from 0 to 1 by N. J. A. Sloane, Oct 15 2021
STATUS
approved