login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230359
Prime numbers p such that their Fibonacci entry points are less than p+1.
4
5, 11, 13, 17, 19, 29, 31, 37, 41, 47, 53, 59, 61, 71, 73, 79, 89, 97, 101, 107, 109, 113, 131, 137, 139, 149, 151, 157, 173, 179, 181, 191, 193, 197, 199, 211, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 373, 379, 389, 397, 401, 409, 419, 421, 431, 433, 439, 449, 457, 461, 479, 491, 499
OFFSET
1,1
COMMENTS
For these primes p there exists a Fibonacci like sequence that doesn't contain multiples of p.
For other primes p the Fibonacci entry points are p+1. These primes are sequence A000057: Primes dividing all Fibonacci sequences.
LINKS
B. Avila and T. Khovanova, Free Fibonacci Sequences, arXiv preprint arXiv:1403.4614 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.8.5.
FORMULA
{p in A000040: A001177(p) < 1+p}.
MAPLE
filter:= proc(n) local i, a, b, c;
if not isprime(n) then return false fi;
a:= 0; b:= 1;
for i from 1 to n-1 do
c:= b;
b:= a+b mod n; if b = 0 then return true fi;
a:= c;
od;
false
end proc:
select(filter, [seq(i, i=3..1000, 2)]); # Robert Israel, Sep 01 2020
MATHEMATICA
A001177[n_] := For[k = 1, True, k++, If[Divisible[Fibonacci[k], n], Return[k]]]; A230359 = Reap[For[p = 2, p <= 499, p = NextPrime[p], If[A001177[p] < 1+p, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 21 2013 *)
PROG
(Sage)
def isA230359(p):
return any(p.divides(fibonacci(k)) for k in (1..p))
print([p for p in primes(1, 500) if isA230359(p)]) # Peter Luschny, Nov 01 2019
CROSSREFS
A002144 is a subsequence.
Sequence in context: A087759 A234644 A299791 * A161548 A090320 A085909
KEYWORD
nonn
AUTHOR
STATUS
approved