OFFSET
1,1
COMMENTS
For these primes p there exists a Fibonacci like sequence that doesn't contain multiples of p.
For other primes p the Fibonacci entry points are p+1. These primes are sequence A000057: Primes dividing all Fibonacci sequences.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
B. Avila and T. Khovanova, Free Fibonacci Sequences, arXiv preprint arXiv:1403.4614 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.8.5.
MAPLE
filter:= proc(n) local i, a, b, c;
if not isprime(n) then return false fi;
a:= 0; b:= 1;
for i from 1 to n-1 do
c:= b;
b:= a+b mod n; if b = 0 then return true fi;
a:= c;
od;
false
end proc:
select(filter, [seq(i, i=3..1000, 2)]); # Robert Israel, Sep 01 2020
MATHEMATICA
A001177[n_] := For[k = 1, True, k++, If[Divisible[Fibonacci[k], n], Return[k]]]; A230359 = Reap[For[p = 2, p <= 499, p = NextPrime[p], If[A001177[p] < 1+p, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 21 2013 *)
PROG
(Sage)
def isA230359(p):
return any(p.divides(fibonacci(k)) for k in (1..p))
print([p for p in primes(1, 500) if isA230359(p)]) # Peter Luschny, Nov 01 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Brandon Avila and Tanya Khovanova, Oct 16 2013
STATUS
approved