login
A229917
Numbers of espalier polycubes of a given volume in dimension 4.
1
1, 4, 7, 16, 22, 46, 58, 107, 140, 227, 287, 464, 563, 851, 1067, 1530, 1866, 2661, 3198, 4428, 5361, 7185, 8613, 11524, 13639, 17839, 21272, 27359, 32300, 41369, 48512, 61311, 72105, 89904, 105226, 130834, 152164, 187297, 218356, 266444, 309125, 375995, 434670, 525045, 607329, 728256, 839874, 1004938
OFFSET
1,2
COMMENTS
A (d+1)-pyramid polycube is a (d+1)-polycube obtained by gluing together horizontal (d+1)-plateaux (parallelepipeds of height 1) in such a way that the cell (0,0,...,0) belongs to the first plateau and each cell with coordinates (0,n_1,...,n_d) belonging to the first plateau is such that n_1 , ... , n_d >= 0.
If the cell with coordinates (n_0,n_1,...,n_d) belongs to the (n_0+1)-st plateau (n_0>0), then the cell with coordinates (n_0-1, n_1, ... ,n_d) belongs to the n_0-th plateau.
A (d+1)-espalier is a (d+1)-pyramid such that each plateau contains the cell (n_0,0,...,0).
CROSSREFS
Sequence in context: A325657 A054599 A285998 * A095755 A245937 A348771
KEYWORD
nonn
AUTHOR
STATUS
approved