The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229915 Number of espalier polycubes of a given volume in dimension 3. 6
 1, 1, 3, 5, 10, 14, 26, 34, 57, 76, 116, 150, 227, 284, 408, 520, 718, 895, 1226, 1508, 2018, 2487, 3248, 3968, 5160, 6235, 7970, 9653, 12179, 14630, 18367, 21924, 27241, 32506, 39985, 47492, 58203, 68752, 83613, 98730, 119269, 140224, 168799, 197758, 236753, 277052, 329867, 384852, 457006, 531500, 628338 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A pyramid polycube is obtained by gluing together horizontal plateaux (parallelepipeds of height 1) in such a way that (0,0,0) belongs to the first plateau and each cell with coordinates (0,b,c) belongs to the first plateau such that b,c >= 0. If the cell with coordinates (a,b,c) belongs to the (a+1)-st plateau (a>0), then the cell with coordinates (a-1, b, c) belongs to the a-th plateau. An espalier polycube is a special pyramid such that each plateau contains the cell with coordinates (a,0,0). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..100 C. Carré, N. Debroux, M. Deneufchatel, J.-P. Dubernard et al., Dirichlet convolution and enumeration of pyramid polycubes, 2013. C. Carre, N. Debroux, M. Deneufchatel, J.-Ph. Dubernard, C. Hillariet, J.-G. Luque, and O. Mallet, Enumeration of Polycubes and Dirichlet Convolutions, J. Int. Seq. 18 (2015) 15.11.4. FORMULA The generating function for the numbers of espaliers of height h and volumes v_1 , ... v_h is x_1^{n_1} * ... x_h^{n_h} / ((1-x_1^{n_1}) *(1-x_1^{n_1}*x_2^{n_2}) *... *(1-x_1^{n_1}*x_2^{n_2}*...x_h^{n_h})). This sequence is obtained with x_1 = ... = x_h = p by summing over n_1>= ... >= n_h>=1 and then over h. CROSSREFS Cf. A026820, A100882, A227925, A230118, A229917, A229925, A323582. Sequence in context: A320886 A323433 A220489 * A092269 A323429 A319066 Adjacent sequences: A229912 A229913 A229914 * A229916 A229917 A229918 KEYWORD nonn AUTHOR Matthieu Deneufchâtel, Oct 03 2013 EXTENSIONS a(0)=1 prepended by Seiichi Manyama, Aug 20 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 18:47 EST 2023. Contains 360087 sequences. (Running on oeis4.)