OFFSET
1,2
COMMENTS
A pyramid polycube is obtained by gluing together horizontal plateaux (parallelepipeds of height 1) in such a way that (0,0,0) belongs to the first plateau and each cell of coordinate (0,b,c) belonging to the first plateau is such that b , c >= 0.
If the cell with coordinates (a,b,c) belongs to the (a+1)-st plateau (a>0), then the cell with coordinates (a-1, b, c) belongs to the a-th plateau.
LINKS
C. Carré, N. Debroux, M. Deneufchatel, J.-Ph. Dubernard, C. Hillariet, J.-G. Luque, and O. Mallet, Enumeration of Polycubes and Dirichlet Convolutions, J. Int. Seq. 18 (2015) 15.11.4; also hal-00905889, version 1.
FORMULA
The generating function for the numbers of pyramids of height h and volumes v_1 , ... v_h is (n_1-n_2+1) *(n_2-n_3+1) *... *(n_{h-1}-n_h+1) *(x_1^{n_1} * ... x_h^{n_h}) / ((1-x_1^{n_1}) *(1-x_1^{n_1}*x_2^{n_2}) *... *(1-x_1^{n_1}*x_2^{n_2}*...x_h^{n_h})).
This sequence is obtained with x_1 = ... = x_h = p by summing over n_1>=, ... >= n_h>=1 and then over h.
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthieu Deneufchâtel, Oct 03 2013
STATUS
approved