login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229091 ((-1)^n*(2^n-1) + sum(k>=1, k^n*(k^2+k-1)/(k+2)!))/exp(1). 1
0, 2, 0, 14, 20, 152, 532, 2914, 14604, 83342, 494164, 3127016, 20810088, 145645866, 1067655656, 8177942670, 65292914084, 542226906224, 4674687594572, 41766307038106, 386112935883604, 3687989974641678, 36347655981682676, 369185211517110928, 3860146249155022160 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Sequence is related to asymptotic of A229001.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..300

FORMULA

a(n) = Bell(n) - Bell(n+1) + sum(j=0..n, (-1)^j*(2^j*((2*n-j+1)/(j+1))-1) * Bell(n-j) * C(n,j)).

EXAMPLE

Sequence A228997 (column k=7 of A229001) is asymptotic to n!*(532*exp(1)+127)*n, therefore a(7) = 532.

MATHEMATICA

Table[Simplify[((-1)^n*(2^n-1) + Sum[k^n*(k^2+k-1)/(k+2)!, {k, 1, Infinity}])/E], {n, 1, 20}] (* from definition *)

Table[BellB[n] - BellB[n+1] + Sum[(-1)^j*(2^j*((2*n-j+1)/(j+1))-1) * BellB[n-j]*Binomial[n, j], {j, 0, n}], {n, 1, 20}] (* faster *)

CROSSREFS

Cf. A229001, A228959, A229003, A228994, A228995, A228996, A228997, A228998, A228999, A229000.

Sequence in context: A219843 A064855 A088504 * A189425 A266169 A277928

Adjacent sequences:  A229088 A229089 A229090 * A229092 A229093 A229094

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Sep 13 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 19:39 EST 2021. Contains 341618 sequences. (Running on oeis4.)