login
A229089
Numbers n such that sigma(n) mod n < antisigma(n) mod n, where sigma(n) = A000203(n) = sum of divisor of n, antisigma(n) = A024816(n) = sum of non-divisors of n.
4
3, 5, 6, 7, 9, 11, 13, 14, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 41, 43, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93
OFFSET
1,1
COMMENTS
Numbers n such that A229087(n) = A000203(n) mod n - A024816(n) mod n =A054024(n) - A229110(n) < 0.
Complement of union A229088 and A229090 with respect to A000027, where
A229088 = numbers n such that sigma(n) mod n = antisigma(n) mod n,
A229090 = numbers n such that sigma(n) mod n > antisigma(n) mod n.
LINKS
EXAMPLE
Number 11 is in sequence because sigma(11) mod 11 = 12 mod 11 = 1 < antisigma(11) mod 11 = 54 mod 11 = 10.
MATHEMATICA
Select[Range[100], Mod[Total[Complement[Range[#], Divisors[#]]], #]> Mod[ DivisorSigma[ 1, #], #]&] (* Harvey P. Dale, Jan 24 2022 *)
CROSSREFS
Cf. A000203 (sigma(n)), A024816 (antisigma(n)), A229110 (antisigma(n) mod n), A054024 (sigma(n) mod n).
Sequence in context: A233570 A181766 A047584 * A277573 A328585 A072153
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 24 2013
STATUS
approved