login
A229093
The clubs patterns appearing in n X n coins.
15
0, 0, 1, 2, 4, 6, 9, 12, 17, 22, 27, 34, 41, 48, 57, 66, 75, 86, 97, 108, 121, 134, 147, 162, 177, 192, 209, 226, 243, 262, 281, 300, 321, 342, 363, 386, 409, 432, 457, 482, 507, 534, 561, 588, 617, 646, 675, 706, 737, 768, 801, 834, 867, 902, 937, 972, 1009, 1046
OFFSET
0,4
COMMENTS
On the Japanese TV show "Tsuki no Koibito", a girl told her boyfriend that she saw a heart in 4 coins. Actually there are a total of 6 distinct patterns appearing in 2 X 2 coins in which each pattern consists of a part of the perimeter of each coin and forms a continuous area.
a(n) is the number of clubs patterns appearing in n X n coins. It is also A008810(n-1), except for the third term. The inverse patterns (stars or voids between clubs) is A030511 (except the second term). See illustration in links.
FORMULA
a(n) = ceiling((n-1)^2/3), a(0) = 0, a(4) = 4.
G.f.: x^2*(x^7-2*x^6+x^5-x^4+x^3-x^2-1) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Oct 07 2013
MATHEMATICA
CoefficientList[Series[(x^7 - 2 x^6 + x^5 - x^4 + x^3 - x^2 - 1)/((x - 1)^3 (x^2 + x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 08 2013 *)
LinearRecurrence[{2, -1, 1, -2, 1}, {0, 0, 1, 2, 4, 6, 9, 12, 17, 22}, 70] (* Harvey P. Dale, Feb 05 2020 *)
PROG
(PARI) Vec(x^2*(x^7-2*x^6+x^5-x^4+x^3-x^2-1)/((x-1)^3*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Oct 08 2013
(PARI) a(n) = ceil((n-1)^2/3) \\ Charles R Greathouse IV, Jan 06 2016
CROSSREFS
Cf. A008810, A030511, A074148 (heart patterns), A227906, A229154.
Sequence in context: A338200 A194450 A080556 * A342371 A064985 A090631
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Sep 13 2013
EXTENSIONS
More terms from Colin Barker, Oct 08 2013
STATUS
approved