login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022856
a(n) = n-2 + Sum_{i = 1..n-2} (a(i+1) mod a(i)) for n >= 3 with a(1) = a(2) = 1.
18
1, 1, 1, 2, 3, 5, 8, 12, 17, 23, 30, 38, 47, 57, 68, 80, 93, 107, 122, 138, 155, 173, 192, 212, 233, 255, 278, 302, 327, 353, 380, 408, 437, 467, 498, 530, 563, 597, 632, 668, 705, 743, 782, 822, 863, 905, 948, 992, 1037, 1083, 1130, 1178, 1227
OFFSET
1,4
COMMENTS
Essentially triangular numbers + 2, but with three extra initial terms.
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
FORMULA
For n > 3, a(n) = (n^2 - 7*n + 16)/2 = A027689(n-4)/2 = A000217(n-4) + 2 = A000124(n-4) + 1. - Henry Bottomley, Jun 27 2000
a(n) = Sum_{k=0..2} A007318(n-k-2, k) for n > 3. - Johannes W. Meijer, Aug 11 2013
Sum_{n>=1} 1/a(n) = 3 + 2*Pi*tanh(sqrt(15)*Pi/2)/sqrt(15). - Amiram Eldar, Dec 13 2022
MATHEMATICA
a[n_] := If[n<4, 1, (n^2-7n+16)/2]; Array[a, 60] (* Jean-François Alcover, Mar 08 2017 *)
PROG
(PARI) for(n=1, 100, print1(if(n<4, 1, (n^2 - 7*n +16)/2), ", ")) \\ G. C. Greubel, Jul 13 2017
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved