OFFSET
1,4
COMMENTS
Essentially triangular numbers + 2, but with three extra initial terms.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
For n > 3, a(n) = (n^2 - 7*n + 16)/2 = A027689(n-4)/2 = A000217(n-4) + 2 = A000124(n-4) + 1. - Henry Bottomley, Jun 27 2000
a(n) = Sum_{k=0..2} A007318(n-k-2, k) for n > 3. - Johannes W. Meijer, Aug 11 2013
Sum_{n>=1} 1/a(n) = 3 + 2*Pi*tanh(sqrt(15)*Pi/2)/sqrt(15). - Amiram Eldar, Dec 13 2022
MATHEMATICA
a[n_] := If[n<4, 1, (n^2-7n+16)/2]; Array[a, 60] (* Jean-François Alcover, Mar 08 2017 *)
PROG
(PARI) for(n=1, 100, print1(if(n<4, 1, (n^2 - 7*n +16)/2), ", ")) \\ G. C. Greubel, Jul 13 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved