|
|
A228317
|
|
The hyper-Wiener index of the triangular graph T(n) (n>=1).
|
|
2
|
|
|
0, 0, 3, 21, 75, 195, 420, 798, 1386, 2250, 3465, 5115, 7293, 10101, 13650, 18060, 23460, 29988, 37791, 47025, 57855, 70455, 85008, 101706, 120750, 142350, 166725, 194103, 224721, 258825, 296670, 338520, 384648, 435336, 490875, 551565, 617715, 689643
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
The triangular graph T(n) is the graph whose vertices represent the 2-subsets of {1,2,...,n} and two vertices are adjacent provided the corresponding 2-subsets have a nonempty intersection.
The triangular graph T(n) is a strongly regular graph with parameters n(n-1)/2, 2(n-2), n-2, 4 (see the Brualdi et al. reference, Theorem 5.2.4).
|
|
REFERENCES
|
R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.
|
|
LINKS
|
Table of n, a(n) for n=1..38.
Eric Weisstein's World of Mathematics, TriangularGraph.
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
|
|
FORMULA
|
a(n) = n*(n-1)*(n-2)*(3*n-5)/8.
G.f.: 3*x^3*(1+2x)/(1-x)^5.
The Hosoya-Wiener polynomial of T(n) is (1/8)n(n-1)(4+4(n-2)t+(n-2)(n-3)t^2).
a(n) = 3*A001296(n-2). - R. J. Mathar, Mar 05 2017
|
|
MAPLE
|
a := proc (n) options operator, arrow: (1/8)*n*(n-1)*(n-2)*(3*n-5) end proc: seq(a(n), n = 1 .. 38);
|
|
CROSSREFS
|
Cf. A006011
Sequence in context: A281008 A238193 A054646 * A322228 A109721 A067002
Adjacent sequences: A228314 A228315 A228316 * A228318 A228319 A228320
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Emeric Deutsch, Aug 26 2013
|
|
STATUS
|
approved
|
|
|
|