The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006011 a(n) = n^2*(n^2 - 1)/4. (Formerly M3044) 22
 0, 0, 3, 18, 60, 150, 315, 588, 1008, 1620, 2475, 3630, 5148, 7098, 9555, 12600, 16320, 20808, 26163, 32490, 39900, 48510, 58443, 69828, 82800, 97500, 114075, 132678, 153468, 176610, 202275, 230640, 261888, 296208, 333795, 374850, 419580, 468198 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Products of two consecutive triangular numbers (A000217). a(n) is the number of Lyndon words of length 4 on an n-letter alphabet. A Lyndon word is a primitive word that is lexicographically earliest in its cyclic rotation class. For example, a(2)=3 counts 1112, 1122, 1222. - David Callan, Nov 29 2007 For n >= 2 this is the second rightmost column of A163932. - Johannes W. Meijer, Oct 16 2009 Partial sums of A059270. - J. M. Bergot, Jun 27 2013 Using the integers, triangular numbers, and squares plot the points (A001477(n),A001477(n+1)), (A000217(n), A000217(n+1)), and (A000290(n),A000290(n+1) to create the vertices of a triangle. One-half the area of this triangle = a(n). - J. M. Bergot, Aug 01 2013 a(n) is the Wiener index of the triangular graph T(n+1). - Emeric Deutsch, Aug 26 2013 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Miguel Azaola and Francisco Santos, The number of triangulations of the cyclic polytope C(n,n-4), Discrete Comput. Geom., Vol. 27 (2002), pp. 29-48 (see Prop. 4.2(a)). S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926. S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926. (Annotated scanned copy) Eric Weisstein's World of Mathematics, Triangular Graph. Eric Weisstein's World of Mathematics, Wiener Index. Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA G.f.: 3*(1 + x) / (1 - x)^5. a(n) = (n-1)*n/2 * n*(n+1)/2 = A000217(n-1)*A000217(n) = 1/2*(n^2-1)*n^2/2 = 1/2*A000217(n^2-1). - Alexander Adamchuk, Apr 13 2006 a(n) = 3*A002415(n) = A047928(n-1)/4 = A083374(n-1)/2 = A008911(n)*3/2. - Zerinvary Lajos, May 09 2007 a(n) = (A126274(n) - A000537(n+1))/2. - Enrique Pérez Herrero, Mar 11 2013 Ceiling(sqrt(a(n)) + sqrt(a(n-1)))/2 = A000217(n). - Richard R. Forberg, Aug 14 2013 a(n) = Sum_{i=1..n-1} i*(i^2+n) for n > 1 (see Example section). - Bruno Berselli, Aug 29 2014 Sum_{n>=2} 1/a(n) = 7 - 2*Pi^2/3 = 0.42026373260709425411... . - Vaclav Kotesovec, Apr 27 2016 a(n) = A000217(n^2+n) - A000217(n)*A000217(n+1). - Charlie Marion, Feb 15 2020 Sum_{n>=2} (-1)^n/a(n) = Pi^2/3 - 3. - Amiram Eldar, Nov 02 2021 EXAMPLE From Bruno Berselli, Aug 29 2014: (Start) After the zeros, the sequence is provided by the row sums of the triangle: 3; 4, 14; 5, 16, 39; 6, 18, 42, 84; 7, 20, 45, 88, 155; 8, 22, 48, 92, 160, 258; 9, 24, 51, 96, 165, 264, 399; 10, 26, 54, 100, 170, 270, 406, 584; 11, 28, 57, 104, 175, 276, 413, 592, 819; 12, 30, 60, 108, 180, 282, 420, 600, 828, 1110; etc., where T(r,c) = c*(c^2+r+1), with r = row index, c = column index, r >= c > 0. (End) MAPLE A006011 := proc(n) n^2*(n^2-1)/4 ; end proc: # R. J. Mathar, Nov 29 2015 MATHEMATICA Table[n^2 (n^2 - 1)/4, {n, 0, 38}] Binomial[Range[20]^2, 2]/2 (* Eric W. Weisstein, Sep 08 2017 *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 18, 60, 150}, 20] (* Eric W. Weisstein, Sep 08 2017 *) CoefficientList[Series[-3 x (1 + x)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *) PROG (Magma) [n^2*(n^2-1)/4: n in [0..40]]; // Vincenzo Librandi, Sep 14 2011 (PARI) a(n)=binomial(n^2, 2)/2 \\ Charles R Greathouse IV, Jun 27 2013 CROSSREFS Thrice A002415. Row 4 of A074650. Cf. A002415, A008911, A047928, A083374, A228317 A column of A124428. Sequence in context: A190313 A139362 A012763 * A012779 A327768 A074439 Adjacent sequences: A006008 A006009 A006010 * A006012 A006013 A006014 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 04:50 EST 2022. Contains 358578 sequences. (Running on oeis4.)