login
A228061
Numbers k such that k^2 = sigma(m) for some m.
4
1, 2, 6, 11, 12, 16, 18, 20, 24, 28, 30, 31, 32, 36, 40, 42, 44, 48, 52, 54, 56, 60, 62, 64, 66, 68, 70, 72, 76, 78, 80, 84, 88, 90, 96, 98, 100, 102, 104, 108, 112, 114, 120, 124, 126, 128, 132, 136, 140, 144, 150, 152, 154, 156, 160, 162, 164, 168, 172, 174
OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Paul Pollack and Carl Pomerance, Square values of Euler's function, Bull. London Math. Soc., Vol. 46, No. 2 (2014), pp. 403-414; alternative link. See section 5.
FORMULA
a(n) = sqrt(A038688(n)).
MATHEMATICA
nn = 40000; t = Select[Union[DivisorSigma[1, Range[nn]]], IntegerQ[Sqrt[#]] &]; t = Sqrt[t]; t = Select[t, # < Sqrt[nn] &]
With[{nn=50000}, Union[Select[Sqrt[DivisorSigma[1, Range[nn]]], IntegerQ[ #] && #<=Sqrt[nn]&]]] (* Harvey P. Dale, Jul 12 2021 *)
PROG
(PARI) lista(kmax) = for(k = 1, kmax, if(invsigmaNum(k^2) > 0, print1(k, ", "))); \\ Amiram Eldar, Aug 12 2024, using Max Alekseyev's invphi.gp
CROSSREFS
Cf. A000203, A038688 (squares of these numbers).
Cf. A221284 (similar numbers for the phi function).
Sequence in context: A274689 A123112 A092189 * A357776 A191772 A323044
KEYWORD
nonn
AUTHOR
T. D. Noe, Sep 04 2013
STATUS
approved