This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227425 Decimal expansion of 'B', a Young-Fejér-Jackson constant linked to the positivity of certain sine sums. 3
 2, 1, 1, 0, 2, 3, 3, 9, 6, 6, 1, 2, 1, 5, 7, 2, 1, 9, 6, 4, 6, 6, 8, 2, 8, 1, 5, 6, 6, 6, 3, 8, 4, 5, 1, 8, 9, 6, 4, 2, 1, 1, 3, 0, 2, 9, 4, 1, 5, 0, 6, 4, 8, 4, 2, 2, 3, 5, 2, 3, 1, 2, 1, 6, 2, 6, 5, 8, 9, 7, 0, 5, 8, 1, 4, 4, 0, 1, 3, 3, 4, 3, 7, 3, 6, 2, 9, 1, 8, 6, 2, 8, 3, 3, 0, 1, 2, 2, 3, 3, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 242. LINKS FORMULA Given lambda from A227423, 'b' is the unique positive solution to (1+lambda)*Pi*((b-1)*psi(1+(b-1)/2)-2*b*psi(1+b/2)+(b+1)*psi(1+(b+1)/2)) = 2*sin(lambda*Pi), where psi is the digamma function. EXAMPLE 2.110233966121572196466828156663845189642113029415064842235231216265897058... MATHEMATICA b /. FindRoot[(1 + lambda) Pi == Tan[lambda*Pi] && (1 + lambda)*Pi*((b - 1)*PolyGamma[1 + (b - 1)/2] - 2*b*PolyGamma[1 + b/2] + (b + 1) PolyGamma[1 + (b + 1)/2]) == 2*Sin[lambda*Pi], {lambda, 2/5}, {b, 2}, WorkingPrecision -> 105] // RealDigits[#][[1, 1;; 101]& CROSSREFS Cf. A227422, A227423, A227424. Sequence in context: A123340 A267486 A285229 * A301636 A238857 A253587 Adjacent sequences:  A227422 A227423 A227424 * A227426 A227427 A227428 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Jul 11 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 16 03:41 EST 2018. Contains 317252 sequences. (Running on oeis4.)