The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285229 Expansion of g.f. Product_{j>=1} 1/(1-y*x^j)^A000009(j), triangle T(n,k), n>=0, 0<=k<=n, read by rows. 14
 1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 3, 1, 1, 0, 3, 4, 3, 1, 1, 0, 4, 8, 5, 3, 1, 1, 0, 5, 11, 10, 5, 3, 1, 1, 0, 6, 18, 16, 11, 5, 3, 1, 1, 0, 8, 25, 29, 18, 11, 5, 3, 1, 1, 0, 10, 38, 44, 34, 19, 11, 5, 3, 1, 1, 0, 12, 52, 72, 55, 36, 19, 11, 5, 3, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS Alois P. Heinz, Rows n = 0..200, flattened FORMULA G.f.: Product_{j>=1} 1/(1-y*x^j)^A000009(j). EXAMPLE T(n,k) is the number of multisets of exactly k partitions of positive integers into distinct parts with total sum of parts equal to n. T(4,1) = 2: {4}, {31}. T(4,2) = 3: {3,1}, {21,1}, {2,2}. T(4,3) = 1: {2,1,1}. T(4,4) = 1: {1,1,1,1}. Triangle T(n,k) begins:   1;   0,  1;   0,  1,  1;   0,  2,  1,   1;   0,  2,  3,   1,  1;   0,  3,  4,   3,  1,  1;   0,  4,  8,   5,  3,  1,  1;   0,  5, 11,  10,  5,  3,  1,  1;   0,  6, 18,  16, 11,  5,  3,  1,  1;   0,  8, 25,  29, 18, 11,  5,  3,  1, 1;   0, 10, 38,  44, 34, 19, 11,  5,  3, 1, 1;   0, 12, 52,  72, 55, 36, 19, 11,  5, 3, 1, 1;   0, 15, 75, 110, 96, 60, 37, 19, 11, 5, 3, 1, 1;   ... MAPLE with(numtheory): g:= proc(n) option remember; `if`(n=0, 1, add(add(       `if`(d::odd, d, 0), d=divisors(j))*g(n-j), j=1..n)/n)     end: b:= proc(n, i) option remember; expand(       `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*        x^j*binomial(g(i)+j-1, j), j=0..n/i))))     end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n\$2)): seq(T(n), n=0..16); MATHEMATICA L[n_] := QPochhammer[x^2]/QPochhammer[x] + O[x]^n; A[n_] := Module[{c = L[n]}, CoefficientList[#, y]& /@ CoefficientList[ 1/Product[(1 - x^k*y + O[x]^n)^SeriesCoefficient[c, {x, 0, k}], {k, 1, n}], x]]; A[12] // Flatten (* Jean-François Alcover, Jan 19 2020, after Andrew Howroyd *) g[n_] := g[n] = If[n==0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[b[n - i*j, i - 1]*x^j* Binomial[g[i] + j - 1, j], {j, 0, n/i}]]]; T[n_] := CoefficientList[b[n, n] + O[x]^(n+1), x]; T /@ Range[0, 16] // Flatten (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *) PROG (PARI) L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))} A(n)={my(c=L(n), v=Vec(1/prod(k=1, n, (1 - x^k*y + O(x*x^n))^polcoef(c, k)))); vector(#v, n, Vecrev(v[n], n))} {my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019 CROSSREFS Columns k=0..10 give: A000007, A000009 (for n>0), A320787, A320788, A320789, A320790, A320791, A320792, A320793, A320794, A320795. Row sums give A089259. T(2n,n) give A285230. Cf. A061260. Sequence in context: A114638 A123340 A267486 * A227425 A333213 A301636 Adjacent sequences:  A285226 A285227 A285228 * A285230 A285231 A285232 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Apr 14 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 09:18 EDT 2022. Contains 356204 sequences. (Running on oeis4.)