login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227426 Number of partitions into distinct parts without three consecutive parts. 2
1, 1, 1, 2, 2, 3, 3, 5, 6, 7, 9, 11, 13, 16, 20, 23, 28, 33, 39, 46, 55, 63, 75, 87, 101, 117, 136, 156, 180, 207, 238, 272, 311, 355, 404, 460, 522, 592, 670, 758, 855, 965, 1087, 1223, 1373, 1543, 1728, 1936, 2166, 2421, 2702, 3016, 3359, 3741, 4162, 4626, 5136, 5702, 6320, 7002, 7753, 8576, 9479, 10473 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Number of partitions into distinct parts with maximal perimeter.

For n>=1, diagonal of A227344.

LINKS

Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..10000

MAPLE

b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,

       b(n, i-1, 0)+`if`(i>n or t=2, 0, b(n-i, i-1, t+1))))

    end:

a:= n-> b(n, n, 0):

seq(a(n), n=0..80);  # Alois P. Heinz, Jul 15 2013

MATHEMATICA

b[n_, i_, t_] := b[n, i, t] = If[n==0, 1, If[i<1, 0, b[n, i-1, 0] + If[i>n || t==2, 0, b[n-i, i-1, t+1]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jul 02 2015, after Alois P. Heinz *)

PROG

(Haskell)

a227426 = p 1 1 where

  p _ _ 0 = 1

  p k i m = if m < k then 0 else p (k + i) (3 - i) (m - k) + p (k + 1) 1 m

-- Reinhard Zumkeller, Jul 14 2013

CROSSREFS

Cf. A000009.

Sequence in context: A097450 A062303 A180682 * A229950 A050318 A130841

Adjacent sequences:  A227423 A227424 A227425 * A227427 A227428 A227429

KEYWORD

nonn

AUTHOR

Joerg Arndt, Jul 11 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 17:56 EST 2017. Contains 294894 sequences.