This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227403 a(n) = Sum_{k=0..n} binomial(n^2, n*k) * binomial(n*k, k^2). 6
 1, 2, 14, 1514, 1308582, 17304263902, 1362702892177706, 1323407909279927430346, 11218363871234340925730020646, 637467717878006909442727527733810142, 519660435252919757259949810325837093364580014, 2289503386759572781844843312201361014103189493095636611 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..46 V. Kotesovec, Asymptotic of sequence A227403, Sep 21 2013 FORMULA a(n) = Sum_{k=0..n} (n^2)! / ( (n^2-n*k)! * (n*k-k^2)! * (k^2)! ). Limit n->infinity a(n)^(1/n^2) = r^(-(1+r)^2/(2*r)) = 2.93544172048274..., where r = 0.6032326837741362... (see A237421) is the root of the equation (1-r)^(2*r) = r^(2*r+1). - Vaclav Kotesovec, Sep 21 2013 EXAMPLE The following triangles illustrate the terms involved in the sum a(n) = Sum_{k=0..n} A209330(n,k) * A228832(n,k). Triangle A209330(n,k) = binomial(n^2, n*k) begins: 1; 1, 1; 1, 6, 1; 1, 84, 84, 1; 1, 1820, 12870, 1820, 1; 1, 53130, 3268760, 3268760, 53130, 1; 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1; ... Triangle A228832(n,k) = binomial(n*k, k^2) begins: 1; 1, 1; 1, 2, 1; 1, 3, 15, 1; 1, 4, 70, 220, 1; 1, 5, 210, 5005, 4845, 1; 1, 6, 495, 48620, 735471, 142506, 1; ... MATHEMATICA Table[Sum[Binomial[n^2, n*k]*Binomial[n*k, k^2], {k, 0, n}], {n, 0, 10}] (* Vaclav Kotesovec, Sep 21 2013 *) r^(-(1+r)^2/(2*r))/.FindRoot[(1-r)^(2*r) == r^(2*r+1), {r, 1/2}, WorkingPrecision->50] (* program for numerical value of the limit n->infinity a(n)^(1/n^2), Vaclav Kotesovec, Sep 21 2013 *) PROG (PARI) {a(n)=sum(k=0, n, binomial(n^2, n*k)*binomial(n*k, k^2))} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A209330, A228832, A206849, A206152, A237421. Sequence in context: A225163 A190634 A130421 * A156736 A277288 A296412 Adjacent sequences:  A227400 A227401 A227402 * A227404 A227405 A227406 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 20 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 17:16 EDT 2019. Contains 323533 sequences. (Running on oeis4.)