login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206152 a(n) = Sum_{k=0..n} binomial(n,k)^(n+k). 7
1, 2, 10, 326, 64066, 111968752, 1091576358244, 106664423412770932, 67305628532703785062402, 329378455047908259704557301276, 15577435010841058543979449475481629020, 4149966977623235242137197627437116176363522092 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ignoring initial term, equals the logarithmic derivative of A206151.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..47

FORMULA

Limit n->infinity a(n)^(1/n^2) = r^(-(1+r)^2/(2*r)) = 2.93544172048274005711865243..., where r = 0.6032326837741362... (see A237421) is the root of the equation (1-r)^(2*r) = r^(2*r+1). - Vaclav Kotesovec, Mar 03 2014

EXAMPLE

L.g.f.: L(x) = 2*x + 10*x^2/2 + 326*x^3/3 + 64066*x^4/4 + 111968752*x^5/5 +...

where exponentiation yields A206151:

exp(L(x)) = 1 + 2*x + 7*x^2 + 120*x^3 + 16257*x^4 + 22426576*x^5 +...

Illustration of initial terms:

a(1) = 1^1 + 1^2 = 2;

a(2) = 1^2 + 2^3 + 1^4 = 10;

a(3) = 1^3 + 3^4 + 3^5 + 1^6 = 326;

a(4) = 1^4 + 4^5 + 6^6 + 4^7 + 1^8 = 64066; ...

MATHEMATICA

Table[Sum[Binomial[n, k]^(n+k), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)

PROG

(PARI) {a(n)=sum(k=0, n, binomial(n, k)^(n+k))}

CROSSREFS

Cf. A206151, A227403, A237421.

Sequence in context: A275611 A015178 A296178 * A261007 A013034 A207140

Adjacent sequences:  A206149 A206150 A206151 * A206153 A206154 A206155

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 04 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 16:14 EDT 2019. Contains 328302 sequences. (Running on oeis4.)