This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206152 a(n) = Sum_{k=0..n} binomial(n,k)^(n+k). 7
 1, 2, 10, 326, 64066, 111968752, 1091576358244, 106664423412770932, 67305628532703785062402, 329378455047908259704557301276, 15577435010841058543979449475481629020, 4149966977623235242137197627437116176363522092 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ignoring initial term, equals the logarithmic derivative of A206151. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..47 FORMULA Limit n->infinity a(n)^(1/n^2) = r^(-(1+r)^2/(2*r)) = 2.93544172048274005711865243..., where r = 0.6032326837741362... (see A237421) is the root of the equation (1-r)^(2*r) = r^(2*r+1). - Vaclav Kotesovec, Mar 03 2014 EXAMPLE L.g.f.: L(x) = 2*x + 10*x^2/2 + 326*x^3/3 + 64066*x^4/4 + 111968752*x^5/5 +... where exponentiation yields A206151: exp(L(x)) = 1 + 2*x + 7*x^2 + 120*x^3 + 16257*x^4 + 22426576*x^5 +... Illustration of initial terms: a(1) = 1^1 + 1^2 = 2; a(2) = 1^2 + 2^3 + 1^4 = 10; a(3) = 1^3 + 3^4 + 3^5 + 1^6 = 326; a(4) = 1^4 + 4^5 + 6^6 + 4^7 + 1^8 = 64066; ... MATHEMATICA Table[Sum[Binomial[n, k]^(n+k), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *) PROG (PARI) {a(n)=sum(k=0, n, binomial(n, k)^(n+k))} CROSSREFS Cf. A206151, A227403, A237421. Sequence in context: A275611 A015178 A296178 * A261007 A013034 A207140 Adjacent sequences:  A206149 A206150 A206151 * A206153 A206154 A206155 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 16:14 EDT 2019. Contains 328302 sequences. (Running on oeis4.)