The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209330 Triangle defined by T(n,k) = binomial(n^2, n*k), for n>=0, k=0..n, as read by rows. 10
 1, 1, 1, 1, 6, 1, 1, 84, 84, 1, 1, 1820, 12870, 1820, 1, 1, 53130, 3268760, 3268760, 53130, 1, 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1, 1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Column 1 equals A014062. Row sums equal A167009. Antidiagonal sums equal A209331. Ignoring initial row T(0,0), equals the logarithmic derivative of the g.f. of triangle A209196. LINKS EXAMPLE The triangle of coefficients C(n^2,n*k), n>=k, k=0..n, begins: 1; 1, 1; 1, 6, 1; 1, 84, 84, 1; 1, 1820, 12870, 1820, 1; 1, 53130, 3268760, 3268760, 53130, 1; 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1; 1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1; ... MATHEMATICA Table[Binomial[n^2, n*k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 05 2018 *) PROG (PARI) {T(n, k)=binomial(n^2, n*k)} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print("")) CROSSREFS Cf. A014062 (column 1), A167009 (row sums), A209331, A209196. Cf. related triangles: A209196 (exp), A228836, A228832, A226234. Cf. A206830. Sequence in context: A172375 A075377 A046792 * A111825 A085552 A002950 Adjacent sequences:  A209327 A209328 A209329 * A209331 A209332 A209333 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, Mar 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 18:28 EST 2020. Contains 332307 sequences. (Running on oeis4.)