login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227135
Partitions with parts repeated at most twice and repetition only allowed if first part has an even index (first index = 1).
3
1, 1, 1, 2, 2, 4, 4, 6, 8, 10, 12, 17, 20, 25, 31, 39, 47, 58, 69, 85, 102, 123, 145, 175, 207, 246, 290, 343, 401, 473, 551, 646, 751, 875, 1012, 1177, 1358, 1570, 1807, 2083, 2389, 2746, 3140, 3597, 4106, 4690, 5337, 6082, 6907, 7848, 8895, 10085, 11404, 12902, 14561, 16438, 18520, 20864, 23460, 26385, 29619
OFFSET
0,4
LINKS
FORMULA
Conjecture: A227134(n) + A227135(n) = A182372(n) for n>=0, see comment in A182372.
G.f.: 1/(1-x) + Sum_{n>=2} x^(A002620(n+2)-1) / Product_{k=1..n} (1-x^k), where A002620(n) = floor(n/2)*ceiling(n/2) forms the quarter-squares. - Paul D. Hanna, Jul 06 2013
a(n) ~ c * exp(Pi*sqrt(2*n/5)) / n^(3/4), where c = 2^(3/4) / (sqrt(5)*(1 + sqrt(5))^(3/2)) = 0.1291995618069... - Vaclav Kotesovec, May 28 2018, updated Mar 06 2020
EXAMPLE
G.f.: 1 + x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 4*x^6 + 6*x^7 + 8*x^8 +...
G.f.: 1/(1-x) + x^3/((1-x)*(1-x^2)) + x^5/((1-x)*(1-x^2)*(1-x^3)) + x^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + x^11/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) + x^15/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6))) +...
There are a(13)=25 such partitions, displayed here as partitions into two sorts of parts (format P:S for sort:part) where the first sort is 1 and sorts oscillate:
01: [ 1:1 2:0 2:1 3:0 5:1 ]
02: [ 1:1 2:0 2:1 4:0 4:1 ]
03: [ 1:1 2:0 2:1 8:0 ]
04: [ 1:1 2:0 3:1 7:0 ]
05: [ 1:1 2:0 4:1 6:0 ]
06: [ 1:1 2:0 10:1 ]
07: [ 1:1 3:0 3:1 6:0 ]
08: [ 1:1 3:0 4:1 5:0 ]
09: [ 1:1 3:0 9:1 ]
10: [ 1:1 4:0 8:1 ]
11: [ 1:1 5:0 7:1 ]
12: [ 1:1 6:0 6:1 ]
13: [ 1:1 12:0 ]
14: [ 2:1 3:0 3:1 5:0 ]
15: [ 2:1 3:0 8:1 ]
16: [ 2:1 4:0 7:1 ]
17: [ 2:1 5:0 6:1 ]
18: [ 2:1 11:0 ]
19: [ 3:1 4:0 6:1 ]
20: [ 3:1 5:0 5:1 ]
21: [ 3:1 10:0 ]
22: [ 4:1 9:0 ]
23: [ 5:1 8:0 ]
24: [ 6:1 7:0 ]
25: [13:1 ]
MAPLE
## See A227134
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n=0, 1-t,
`if`(i*(i+1)<n, 0, add(b(n-i*j, i-1,
irem(t+j, 2)), j=0..min(t+1, n/i))))
end:
a:= n-> add(b(n$2, t), t=0..1):
seq(a(n), n=0..60); # Alois P. Heinz, Feb 15 2017
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1 - t, If[i*(i + 1) < n, 0, Sum[ b[n - i*j, i - 1, Mod[t + j, 2]], {j, 0, Min[t + 1, n/i]}]]];
a[n_] := Sum[b[n, n, t], {t, 0, 1}];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 21 2018, after Alois P. Heinz *)
PROG
(PARI) {A002620(n)=floor(n/2)*ceil(n/2)}
{a(n)=polcoeff(1/(1-x+x*O(x^n)) + sum(m=2, sqrtint(4*n), x^(A002620(m+2)-1)/prod(k=1, m, 1-x^k+x*O(x^n))), n)}
for(n=0, 60, print1(a(n), ", ")) \\ Paul D. Hanna, Jul 06 2013
CROSSREFS
Cf. A227134 (parts may repeat after odd index).
Sequence in context: A057601 A294150 A087135 * A162417 A240012 A375134
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jul 02 2013
STATUS
approved