login
A226883
Number of n-length words w over a 4-ary alphabet {a1,a2,...,a4} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a4) >= 1, where #(w,x) counts the letters x in word w.
3
24, 60, 300, 1260, 6496, 20916, 95640, 353760, 1600104, 5626764, 23844002, 88442445, 387629456, 1389902524, 5788974504, 21752247660, 93252286444, 340374221376, 1409907258122, 5335751835865, 22620834658096, 83728749708760, 345377277971570, 1315699675342065
OFFSET
4,1
LINKS
MATHEMATICA
Table[Sum[n!/Product[IntegerPartitions[n, {4}][[k, j]]!, {j, 1, 4}], {k, 1, Length[ IntegerPartitions[n, {4}]]}], {n, 4, 20}] (* Vaclav Kotesovec, Jul 01 2013 *)
CROSSREFS
Column k=4 of A226874.
Sequence in context: A356971 A376292 A370995 * A304547 A371174 A045558
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 21 2013
STATUS
approved