This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226881 Number of n-length binary words w with #(w,0) >= #(w,1) >= 1, where #(w,x) gives the number of digits x in w. 3
 0, 0, 2, 3, 10, 15, 41, 63, 162, 255, 637, 1023, 2509, 4095, 9907, 16383, 39202, 65535, 155381, 262143, 616665, 1048575, 2449867, 4194303, 9740685, 16777215, 38754731, 67108863, 154276027, 268435455, 614429671, 1073741823, 2448023842, 4294967295, 9756737701 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA G.f.: (3*x-1)/(2*(x-1)*(2*x-1)) + 1/(2*sqrt((1+2*x)*(1-2*x))). a(n) = Sum_{i=1..floor(n/2)} C(n,i). - Wesley Ivan Hurt, Mar 14 2015 EXAMPLE a(4) = 10: 0001, 0010, 0011, 0100, 0101, 0110, 1000, 1001, 1010, 1100. MAPLE a:= proc(n) option remember;       `if`(n<4, n*(n-1)*(4-n)/2, (9*(n-1)*(n-4) *a(n-1)       +(12-32*n+6*n^2) *a(n-2) -36*(n-2)*(n-4) *a(n-3)       +8*(n-3)*(3*n-10) *a(n-4))/ (n*(3*n-13)))     end: seq(a(n), n=0..40); MATHEMATICA Table[Sum[Binomial[n, i], {i, Floor[n/2]}], {n, 0, 30}] (* Wesley Ivan Hurt, Mar 14 2015 *) CROSSREFS Column k=2 of A226874. Sequence in context: A135101 A108065 A187767 * A026336 A027913 A081204 Adjacent sequences:  A226878 A226879 A226880 * A226882 A226883 A226884 KEYWORD nonn,easy AUTHOR Alois P. Heinz, Jun 21 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 20:44 EDT 2019. Contains 328315 sequences. (Running on oeis4.)