login
A224781
Primes p such that both 2*p + 1 and p^2 + p + 1 are primes.
0
2, 3, 5, 41, 89, 131, 173, 293, 743, 761, 911, 1559, 1583, 1811, 1931, 1973, 2129, 2273, 2339, 2969, 3449, 3491, 4409, 4733, 5003, 5039, 5501, 6173, 6551, 6761, 7883, 7901, 8093, 8741, 9059, 9689, 10589, 10781, 11171, 11549, 13229, 13553, 14939, 15569
OFFSET
1,1
COMMENTS
Intersection of A005384 and A053182.
Note that 2p+1 is the derivative of p^2+p+1 with respect to p. - T. D. Noe, Apr 18 2013
EXAMPLE
5 is a member since 5+6=11 and 5*6+1=31 are both primes.
MATHEMATICA
Select[Prime[Range[1850]], PrimeQ[2*# + 1] && PrimeQ[#^2 + # + 1] &]
CROSSREFS
Sequence in context: A088483 A235681 A322748 * A136015 A106713 A106820
KEYWORD
nonn
AUTHOR
Jayanta Basu, Apr 17 2013
STATUS
approved