login
A136015
Prime numbers p such that 2*p+1, p*(p + 1) - 1 and p*(p + 1) + 1 are also primes.
1
2, 3, 5, 41, 89, 131, 743, 761, 3449, 6173, 9059, 10781, 11549, 13553, 14939, 15569, 16301, 27809, 33479, 54773, 55439, 57149, 70901, 71849, 76091, 97523, 103391, 103643, 104369, 110543, 114269, 115499, 140111, 141539, 153509, 161033, 162251
OFFSET
1,1
LINKS
EXAMPLE
3 is a term since it is a prime, 2 * 3 + 1 = 7 is a prime, 3 * (3 + 1) = 12, and (11, 13) are twin primes.
MAPLE
a:=proc(n) if isprime(n)=true and isprime(2*n+1)=true and isprime(n*(n+1)-1)= true and isprime(n*(n+1)+1)=true then n else end if end proc: seq(a(n), n=1.. 150000); # Emeric Deutsch, Apr 01 2008
MATHEMATICA
a = ""; For[i = 1, i < 10^5, j = i + 1; s = i + j; m = i*j; p1 = m - 1; p2 = m + 1; If[PrimeQ[i] && PrimeQ[s] && PrimeQ[p1] && PrimeQ[p2], a = a <> ToString[i] <> ", "]; i++ ]; Print[a <> ".."]
Select[Prime[Range[100000]], PrimeQ[2# + 1] && PrimeQ[ #*(# + 1) - 1] && PrimeQ[ #*(# + 1) + 1] &] (* Stefan Steinerberger, Mar 24 2008 *)
CROSSREFS
Sequence in context: A235681 A322748 A224781 * A106713 A106820 A362957
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited with more terms by Stefan Steinerberger and Emeric Deutsch, Mar 24 2008
STATUS
approved