login
A224320
Primes without "3" as a digit that remain prime when any single digit is replaced with "3".
2
2, 5, 7, 11, 17, 41, 47, 71, 107, 167, 179, 197, 449, 859, 1019, 1061, 1499, 2089, 16901, 47717, 56269, 86269, 11917049
OFFSET
1,1
COMMENTS
No more terms < 10^13.
MATHEMATICA
lst = {}; n = 3; Do[If[PrimeQ[p], i = IntegerDigits[p]; If[FreeQ[i, n], t = 0; s = IntegerLength[p]; Do[If[PrimeQ@FromDigits@Insert[Drop[i, {d}], n, d], t++, Break[]], {d, s}]; If[t == s, AppendTo[lst, p]]]], {p, 86269}]; lst
p3Q[n_]:=Module[{idn=IntegerDigits[n]}, FreeQ[idn, 3] && AllTrue[ FromDigits/@ Table[ReplacePart[idn, i->3], {i, IntegerLength[n]}], PrimeQ]]; Select[Prime[Range[10^6]], p3Q] (* The program uses the function AllTrue from Mathematica version 10 *) (* Harvey P. Dale, Aug 20 2014 *)
CROSSREFS
Cf. A224319, A224321-A224322. Subsequence of A038611.
Sequence in context: A265817 A045349 A338339 * A247052 A364649 A163695
KEYWORD
base,more,nonn
AUTHOR
STATUS
approved