

A224317


a(n) = a(n1) + 3  a(n1)!.


0



1, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(0) is taken as 1. The sequence remains essentially the same for a(0)=0,1,2,3.
Even though each term is dependent on the previous term, the sequence is repetitive.


LINKS

Table of n, a(n) for n=1..82.
Index entries for linear recurrences with constant coefficients, signature (0,0,1).


FORMULA

a(n) = a(n1)+3(a(n1))!.
For n > 1, a(n) = (5+4*cos(2*(n+1)*Pi/3)2*sqrt(3)*sin(2*(n+1)*Pi/3))/3.  Wesley Ivan Hurt, Sep 27 2017


EXAMPLE

For n=1, a(1)=a(11)+3(a(11))!=1+31=3.
For n=2, a(2)=a(21)+3(a(21))!=3+36=0.
For n=3, a(3)=a(31)+3(a(31))!=0+31=2.


MATHEMATICA

NestList[#+3#!&, 1, 90] (* or *) PadRight[{1}, 90, {2, 3, 0}] (* Harvey P. Dale, Apr 23 2015 *)


PROG

(PARI) a(n)=if(n>1, [0, 2, 3][n%3+1], 1) \\ Charles R Greathouse IV, Apr 03 2013


CROSSREFS

Sequence in context: A280238 A154574 A119493 * A032531 A301430 A143394
Adjacent sequences: A224314 A224315 A224316 * A224318 A224319 A224320


KEYWORD

nonn,easy


AUTHOR

Mihir Mathur, Apr 03 2013


STATUS

approved



